STROKE FEEDBACK SYSTEM

Benjamin Glassman, Brandon Maddy, and Andrew Acevedo

Client: Dr. Alex Carter

Stroke and Hemiparesis

- Stroke is the 4th most common cause of death in the U.S
- Hemiparesis- weakening or inability to use one side of body (1, 2)
- Caused by lesions in the primary motor cortices
- Inability to perform daily tasks
- Hand function/dexterity is important for normal activities

Neural Pathways

- Hypothesized that brain shuts down ineffective pathways (Liepert 2000)
- Stroke patients often cannot recognize successful movements
- Motor pathway then seems unsuccessful
- Need device to provide feedback for activation of successful motor neuron pathway
- Multimodal sensory feedback is being investigated as an addition to therapy regimen (Huang, 2005 and Lövquist, 2006)

Current Therapeutic Approaches/Exercises

- Constraint-Induced Movement Therapy
- Bobath Concept (Neurodevelopment treatment)
- Music supported therapy

- Sample exercises that target fine motor control
 - Stack pennies.
 - Turn cards over
 - Practice writing.
 - Pinch clothespins
 - Assemble nuts and bolts.
 - String beads.
 - Play checkers.
 - Put together puzzles.
 - Play the piano.
 - Practice typing.

Scope and Goals

- Develop a feedback amplifier for use in rehabilitation
- Sensory feedback should be identifiable by the patient
- Sensory feedback should be multimodal
- System should be accessible across wide range of users
- System should be transportable around hospital or clinic

Design Specifications

- Sensory feedback will be in sensible ranges, ex: auditory ~ 60 dB
- At least 2 modes of sensory feedback
- Needs to be usable with hand circumferences between 17 and 25 cm
- System less than 5 kg, with less than 1 kg on the hand
- System needs resolution of 5° on proximal phalange, or distance resolution of $s / r = \theta$, where θ is 5° and r is the distance from the metacarpophalangeal joint to the proximal interphalangeal joint.
- Sampling rate: 22 Hz is highest meaningful frequency in finger tapping (Jobbagy, 2005)

 $Rate_{Nyq} = 2f_{max}$

Sampling at 100 Hz would be optimal to reduce error, enhance resolution

Existing Solutions

16	100%	0%
18	75	25
20	50	50
22	25	75
24	0	100

US 6,589,287

Citation here should be (Last Name Year)

Existing Solutions

Schaechter 2006

Existing Solutions

WO 2008116234 A1

Citation here should be (Last name Year)

Design Schedule

Project Timeline														
	September			October				November				December		
Choose Project														
Research														
Concept Generation														
Concept Selection														
Design Generation														
Back-End Development														
Optimization/ Finalizing														
Prelim. Report														
Progress Report														
Final Report														
Website Up														
Poster Presentation														

Team Organization

- Andrew
 - designSAFE
 - Progress report
 - Cost analysis
 - Back end interface
- Brandon
 - Final report
 - Website
 - Back end interface

- Ben
 - CAD
 - Materials acquisition
 - Software
 - Front end interface
- All
 - Client interaction
 - Patient observation
 - Idea generation

Questions?

References

- 1. http://www.stroke.org/site/PageNavigator/HOME
- 2. http://www.stroke-rehab.com/hand-exercises.html
- Liepert, Joachim, et al. "Treatment-induced cortical reorganization after stroke in humans." *Stroke* 31.6 (2000): 1210-1216.
- 4. Huang, He, et al. "Interactive multimodal biofeedback for task-oriented neural rehabilitation." *Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the.* IEEE, 2005.
- 5. Lövquist, E., and U. Dreifaldt. "The design of a haptic exercise for post-stroke arm rehabilitation." *Proc. 6th Intl Conf. on Disability, Virtual Reality and Assoc. Technologies, Esbjerg, Denmark, September.* 2006.
- 6. Jobbágy, Ákos, et al. "Analysis of finger-tapping movement." Journal of neuroscience methods 141.1 (2005): 29-39.