Stroke Feedback System Final Design Report

Brandon Maddy, Ben Glassman, and Andrew Acevedo Client: Dr. Alex Carter, MD, PhD

December 2^{*nd*}, 2013

Stroke and Hemiparesis

- Hemiparesis weakening of or inability to use one side of body
- Caused by lesions in primary motor cortices
- Can cause major fine motor deficiencies, leading to a decrease in quality of life

Stroke Rehabilitation: Neurophysiological Hypothesis

- Hypothesis that brain shuts down ineffective motor pathways (Liepert 2000)
- Need device to provide feedback in response to activation of successful motor neuron pathway
- Hypothesis that multi-modal feedback is key for recognition of successful pathways
- Piron, et al. have shown that augmentedfeedback rehab facilitates motor recovery

Project Need

- Feedback amplifier for use in proof-of-concept experiments to test effectiveness of multimodal feedback
- Focus on fine finger movement (finger flexion and pinching movement)

Design Specifications

- System
 Specifications
 - Sampling rate: 100 Hz
 - System must not harm patient
 - Powered by wall outlet, computer, or battery pack
 - User must be able to set operation mode

- Design Specifications
 - Weight on hand:
 <200 g
 - Total weight:
 <5 kg
 - Must fit middle 90% of both genders, as defined by ANSUR
 - Must not severely limit hand motion

- Feedback
 Specifications
 - At least 2 forms (auditory, tactile, visual)
 - Must be detectable by the user, but not damaging

Design Selection

 Bottom-up design approach to microelectromechanical system

Pressure Sensitive Conductive Material

- Velostat/Linqstat
- Conductive material whose resistance varies with pressure applied
- Positioned similarly to flex sensing resistor
- Main drawback
 - Must be manufactured into a sensor

Pinch Sensor Comparison

Piezoelectic Sensor

- Produces a charge in the material when deformed
- Main drawback
 - Suffers from hysteresis

Tactile Switch

- Pinch movement depresses button on switch turning it on
- Main drawback
 Might be too small

Force Sensing Resistor

- Sensor whose resistance changes when a force is applied
- Main drawback
 - Relatively large compared to fingertip.

Design Change

- We abandoned the tactile switch due to its attachment characteristics
 - Designed to be soldered onto a circuit board
- Use Velostat for pinch sensor as well
 - Coding can turn analog sensor to digital input (essentially)
- Utilizes bulk Velostat cost effective

MEMs Interface Analysis

	Weight	Glove	Discrete Components	
Accessibility	10	1	8	
Safety	9	7	8	
Sanitation	9	5	7	
Customizability	5	2	9	
Cost	6	10	8	
Weight	8	8	8	
Ease of Setup	10	10	7	
Ease of part integration	7	5	9	
Total		337	423	

MEMs vs. Optical

	Weight	MEMS Design	LEAP Motion	3Gearsystems	Microsoft Digits	Ascension trakSTAR	Optitrack	Color Glove
Cost	4	10	7	5	6	2	1	5
Portability	8	10	8	6	7	3	0	6
Spatial Resolution	7	5	10	8	7	9	9	5
Temporal Resolution	5	10	8	4	5	9	8	1
Software Involvement	8	10	6	6	1	4	4	3
Patient Accessibility	9	7	9	10	10	10	8	10
Therapist Accessibility	8	8	10	9	8	5	3	9
Feedback Integration	10	10	8	8	8	8	8	8
Total		512	491	434	396	382	315	374

Circuitry

- Large number of inputs and outputs dictated the use of the Arduino Mega 2560
 - 54 digital I/O, 15 PWM outputs, 16 analog ins
- Can sample and convert (analog to digital) at 10 kHz
- Programmable with free software
- Easy to use
- Powered by 7-12 V DC, uses about 100 mA during operation

Feedback Actuators

- Audio:
 - 8Ω, .1W speaker mounts directly to PCB. Driven from Arduino with tone() function.
 - In series with 150Ω resistor the speaker will draw
 32 mA max
 - Volume of 80 dB at max power

Feedback Actuators

• Tactile:

- Coin-type vibration motor mounted on finger pad
- 10mm diameter motor
- $\hfill \label{eq:product}$ $\hfill \hfill \hfill$
- Draws 50mA at 5V

Feedback Actuators

• Visual:

- Need a small RGB LED that <u>can be integrated onto</u> <u>the hand</u>
- Adafruit Neopixel Strip flexible strips of RGB LEDs with built-in driver chip
- 60 mA max draw at 5V (max voltage)

Power Considerations

- How much current will the system draw with everything on?
- Each finger: 60mA + 50mA +5mA +5mA = 120mA
- Speaker: 32mA
- Arduino: ~100mA
- Total: ~732mA, with all components on

PCB Trace Width

- $I = (0.048)(dT^{0.44})(A^{0.725})$ for external traces
 - *dT* is acceptable temp. rise in Celsius, *A* is cross-sectional area (Douglas Brooks, UltraCAD Design, Inc)
- Need at least 12 mil with 10°C allowable rise

Power and Rotary Switch

- 9V, 1.5A 2.1mm DC wall plug with on/off
 9V powers Arduino and DC/DC converter used to power all other components at 5V
- Rotary switch provides mode selection

Misc. Electronic Components

- 2:1 Heat Shrink will be used to bundle the wires from the finger strips
- Circuitry placed in enclosure
- Enclosure machined to provide ports for power supply and wires, open speaker to air

Flex and Pinch Sensor Construction

- Use neoprene to encase three Velostat strips, sandwiched between conductive thread
- Thread is soldered to leads

Discrete Sections - Finger Strip

• Neoprene and encased Velostat flex sensor

Discrete Sections

- Hand and Wrist cuff
- 1 mm Neoprene with hook-and-loop attachments
- Straps fasten around palm and wrist

Discrete Sections

• Side view of neoprene and hook-and-loop thickness

Discrete Sections - Finger Cap

- Extension of finger strip
- Wraps around end of finger

Discrete Sections - Finger Cap

• Encases the finger to form an enclosure

Software Flow

Software Flow

Item	Package	Quantity	Price/ Unit	Total Cost	Lead Time	Manufacturer	Manufacturer Part #	Supplier	Supplier Part #
Arduino Mega 2560 R3	N/A	1	58.95	58.95	3 days	Arduino	A000067	Sparkfun Electronics	DEV-11061
LM7805 Voltage Regulator	TO-220 IGO	1	1.25	1.25	3 days	Texas Instruments	A7805	Sparkfun Electronics	COM-00107
Barrel Jack Power Switch	M/F	1	2.5	2.5	3 days	N/A	N/A	Sparkfun Electronics	COM-11705
PCB Mount Speaker	N/A	1	1.95	1.95	3 days	Sanco Electronics	EMB-30008A	Sparkfun Electronics	COM-11089
Neopixel Strip	60 LED/ m	1	24.95	24.95	3 days	Adafruit Industries	1138	Adafruit Industries	1138
Barrel Power Connector	2.1 mm	1	1.86	1.86	3 days	CUI Inc.	PJ-011A	Digi-Key Corp.	CP-011A-ND
AC/DC Wall Adapter	9V, 1.5 A, 2.1 mm	1	15.95	15.95	3 days	Jameco Reliapro	S15AD090150H06 50-R	Jameco	252786
12 Pos. Rotary Switch	Adj.	1	9.65	9.65	3 days	Grayhill Inc.	56D30-01-1-AJN	Digi-Key Corp.	GH5601-ND
Selector Knob	N/A	1	5.67	5.67	3 days	Grayhill Inc.	11K5028-JMNB	Digi-Key Corp.	11K5028- JMNB-ND
Knob Header	N/A	1	2.17	2.17	3 days	Samtec Inc.	ESQ-106-24-T-D	Newark	91P9155
Input Header		2	3.95	7.9	3 days	4UCON Tech. Inc.	N/A	Sparkfun Electronics	PRT-00743

Item	Package	Quantity	Price/Unit	Total Cost	Lead Time	Manufacturer	Manufacturer Part #	Supplier	Supplier Part #
Board-Board Connector	Male, 40 holes	1	2.95	2.95	3 days	N/A	N/A	Sparkfun Electronics	PRT-10158
Speaker Capacitor	.1mF, 5mm dia., 2.5 mm pitch	1	0.46	0.46	3 days	Panasonic	EEU-HD1C101	Digi-Key Corp.	P15112-ND
1K Resistors	1206	15	0.1	1.5	3 days	Panasonic	ERJ-8GEYJ102V	Digi-Key Corp.	P1.0KECT-ND
150 Ohm Resistor	1206	1	0.1	0.1	3 days	Panasonic	ERJ-8GEYJ151V	Digi-Key Corp.	P150ECT-ND
50 ohm Resistors	1206	5	0.85	4.25	3 days	Vishay	TNPW120650R0BE EN07	Mouser Electronics	71- TNPW120650R 0BEEN
.1uF Capacitor	1206	6	0.1	0.6	3 days	Samsung Electromechanics	CL31B104KBCNNNC	Digi-Key Corp.	1276-1017-1- ND
.33uF Capacitor	1206	1	0.23	0.23	3 days	Samsung Electromechanics	CL31B334KBFNNNE	Digi-Key Corp.	1276-1138-1- ND
SD05-7 Diode	SOD-323	5	0.41	2.05	3 days	Diodes Inc.	SD05-7	Digi-Key Corp.	SD05DICT-ND
Transistor	SOT23	5	0.15	0.75	3 days	Fairchild Semiconductor	MMBT3904	Digi-Key Corp.	MMBT3904FS CT-ND
Hook-Up-Wire	22 AWG, stranded, 25 ft.	1	2.5	2.5	3 days	Sparkfun Electronics	PRT-08022	Sparkfun Electronics	PRT-08022
Heat Shrink	2:1, 1 in., 1 ft. segments	10	1.81	18.1	3 days	Sumitomo Electronics	AMS-DTL-23053/5	Heatshrink.com	5121010
Hand Neoprene	Smooth back, 939 sq.cm., 1mm thick	1	9.93	9.93	3 days	Small Parts	NEOHS-1MM12I12I 60A	Amazon.com	N/A

Item	Package	Quantity	Price/ Unit	Total Cost	Lead Time	Manufacturer	Manufacturer Part #	Supplier	Supplier Part #
Sensor Neoprene	Smooth back, .381 mm, .836 sq.m	1	17.4	17.4	3-7 days	Kmac Plastics	N/A	N/A	N/A
РСВ	N/A	1	32.74	32.74	14+ days	Fritzing Fab	N/A	N/A	N/A
Velostat	.1 mm thickness, 12x36 in.	1	1.95	1.95	7 days	3M	N/A	lessemf.com	LE-1234
Vibration Motors	10 mm dia.	5	1.95	9.75	3 days	Precision Microdrives	310-101	Adafruit Industries	1201
Hook Strip	.5x75 in	1	8	8	3 days	Uline	S-19438	Uline	S-19438
Loop Strip	.5x75 in	1	8	8	3 days	Uline	S-19439	Uline	S-19439
Conductive Thread	30 ft bobbin	1	2.95	2.95	3 days	N/A	N/A	Sparkfun Electronics	DEV-10867
Enclosure	N/A	1	7.95	7.95	3 days	Everest Case	N/A	Sparkfun Electronics	PRT-11366
Standoffs	3/8", 4-40 tooled, 10 pack	1	2.95	2.95	3 days	N/A	N/A	Sparkfun Electronics	PRT-10461
4-40 Phillips Head Screw	10 pack	1	1.5	1.5	3 days	N/A	N/A	Sparkfun Electronics	PRT-10450
Glove Labor Est.		1 hr.	\$50	50				Independent Contractor	
Electronics Assembly		2 hrs.	\$100	200				WUSM Electronics Shop	

- Total cost: \$519.41
- Manufacturing costs are rough estimates and will have to be finalized
- Several points of potential cost reduction for future production

Weight on Hand Analysis

Component	# per hand	Volume (cm^3)	Weight/density of individual component	Weight on hand
0.2 mm Velostat (0.65 x 7 cm)	15	0.091	1	1.365
0.2 mm Velostat (0.5 x 1.5 cm)	15	0.015	1	0.225
1 mm Neoprene (1 x 21.5 cm)	10	2.15	1.3	27.95
1 mm Neoprene Cuff	1	40	1.3	52
0.5 mm Neoprene (0.6 x 12.5 cm)	10	0.375	1.3	4.875
0.5 mm Neoprene (0.6 x 1 cm)	10	0.03	1.3	0.39
LEDs	5	n/a	1	5
Vibrational Motor	5	n/a	1.2	6
Velcro Straps (finger)	5		3	15
Velcro Strap (hand)	1		5	5
Total Weight on Hand (g)				117.805

Safety

- Sanitation is our primary safety concern
 - Transmission of disease amongst patients is unacceptable
 - Neoprene is fluid resistant and easily cleaned
 - Instructions on cleaning drop risk from serious to low
- Mechanical injury to patients (over tightening) is possible, but rigorous training standards will help prevent this
- High currents pose threat
 - Mode selector limits max current draw
 - All potential patient-system interfaces are insulated

Actuator Safety

- Audio can't be above 80 dB
 - We have limited current across the speaker, not operated at full power
- LED brightness
 - Max 1.4 cd
 - Can limit with programming
- Motor vibration
 - Hard to judge
 - We have limited the vibration amplitude to about
 1.4 g

Conclusions

- Did we meet goals?
 - Yes proof of concept device, easily built and tested
 - Weight and feedback level constraints controlled
 - Device is safe
 - Device fits at least 90% of people
 - Doctor/Therapist has some control over operation
- Future plans consult with Dr. Carter to pursue manufacture of prototype and testing for effectiveness
- Also optimize cost and enhance some design features

Conclusions

- Intellectual Property
 - Research device no interest in monetizing
 - May pursue a utility patent or model to prevent monetization by others
- What did we learn?
 - Design is hard...
 - Circuits, CAD, analysis, part searches...
 - Teamwork and focus are key to completing projects
- What would we do differently?
 - Be more open to initial designs
 - Streamlined design from beginning

Thank you! Questions?